The Fan-Raspaud conjecture: A randomized algorithmic approach and application to the pair assignment problem in cubic networks

نویسندگان

  • Piotr Formanowicz
  • Krzysztof Tanas
چکیده

It was conjectured by Fan and Raspaud (1994) that every bridgeless cubic graph contains three perfect matchings such that every edge belongs to at most two of them. We show a randomized algorithmic way of finding Fan–Raspaud colorings of a given cubic graph and, analyzing the computer results, we try to find and describe the Fan–Raspaud colorings for some selected classes of cubic graphs. The presented algorithms can then be applied to the pair assignment problem in cubic computer networks. Another possible application of the algorithms is that of being a tool for mathematicians working in the field of cubic graph theory, for discovering edge colorings with certain mathematical properties and formulating new conjectures related to the Fan–Raspaud conjecture.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Fan Raspaud Conjecture

A conjecture of Fan and Raspaud [3] asserts that every bridgeless cubic graph contains three perfect matchings with empty intersection. Kaiser and Raspaud [6] suggested a possible approach to this problem based on the concept of a balanced join in an embedded graph. We give here some new results concerning this conjecture and prove that a minimum counterexample must have at least 32 vertices.

متن کامل

Non-intersecting perfect matchings in cubic graphs

A conjecture of G. Fan and A. Raspaud asserts that every bridgeless cubic graph contains three perfect matchings with empty intersection. We suggest a possible approach to problems of this type, based on the concept of a balanced join in an embedded graph. We use this method to prove a special case of a conjecture of E. Máčajová and M. Škoviera on Fano colorings of cubic graphs.

متن کامل

Perfect matchings with restricted intersection in cubic graphs

A conjecture of G. Fan and A. Raspaud asserts that every bridgeless cubic graph contains three perfect matchings with empty intersection. We suggest a possible approach to problems of this type, based on the concept of a balanced join in an embedded graph. We use this method to prove that bridgeless cubic graphs of oddness two have Fano colorings using only 5 lines of the Fano plane. This is a ...

متن کامل

Perfect matching covering, the Berge-Fulkerson conjecture, and the Fan-Raspaud conjecture

Let m∗t be the largest rational number such that every bridgeless cubic graph G associated with a positiveweightω has t perfectmatchings {M1, . . . ,Mt}withω(∪i=1 Mi) ≥ m ∗ t ω(G). It is conjectured in this paper that m∗3 = 4 5 , m ∗ 4 = 14 15 , and m ∗ 5 = 1, which are called the weighted PM-covering conjectures. The counterparts of this new invariant m∗t and conjectures for unweighted cubic g...

متن کامل

Assignment problem and its application in Nigerian institutions: Hungarian method approach

Assignment model is a powerful operations research techniques that can be used to solve assignment or allocation problem. This study applies the assignment model to the course allocation problem in Nigeria tertiary institution in order to maximize lecturers’ effectiveness. A well-structured questionnaire was used to obtain data from lecturers and solved with Hungarian method. The study revealed...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied Mathematics and Computer Science

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2012